Package 'classifierplots'

Title: Generates a Visualization of Classifier Performance as a Grid of Diagnostic Plots
Description: Generates a visualization of binary classifier performance as a grid of diagnostic plots with just one function call. Includes ROC curves, prediction density, accuracy, precision, recall and calibration plots, all using ggplot2 for easy modification. Debug your binary classifiers faster and easier!
Authors: Aaron Defazio [aut, cre], Huw Campbell [aut]
Maintainer: Aaron Defazio <[email protected]>
License: BSD 3-clause License + file LICENSE
Version: 1.4.0
Built: 2025-03-02 05:35:21 UTC
Source: https://github.com/adefazio/classifierplots

Help Index


accuracy_plot

Description

Returns a ggplot2 plot object containing an accuracy @ percentile plot

Usage

accuracy_plot(test.y, pred.prob, granularity = 0.02, show_numbers = T)

Arguments

test.y

List of know labels on the test set

pred.prob

List of probability predictions on the test set

granularity

Default 0.02, probability step between points in plot.

show_numbers

Show values as numbers above the plot line


calculate_auc

Description

Compute auc from predictions and truth

Usage

calculate_auc(test.y, pred.prob)

Arguments

test.y

List of know labels on the test set

pred.prob

List of probability predictions on the test set

Value

auc


calibration_plot

Description

Returns a ggplot2 plot object containing a smoothed propensity @ prediction level plot

Usage

calibration_plot(test.y, pred.prob)

Arguments

test.y

List of know labels on the test set

pred.prob

List of probability predictions on the test set


The main functions you want are classifierplots or classifierplots_folder.

Description

The main functions you want are classifierplots or classifierplots_folder.

Produce a suit of classifier diagnostic plots

Usage

classifierplots(test.y, pred.prob)

Arguments

test.y

List of know labels on the test set

pred.prob

List of probability predictions on the test set

Details

example.png

Examples

## Not run: 
 classifierplots(example_predictions$test.y, example_predictions$pred.prob)

## End(Not run)

classifierplots_folder

Description

Produce a suit of classifier diagnostic plots, saving to disk.

Usage

classifierplots_folder(test.y, pred.prob, folder, height = 5, width = 5)

Arguments

test.y

List of know labels on the test set

pred.prob

List of probability predictions on the test set

folder

Directory to save plots into

height

height of separately saved plots

width

width of separately saved plots


density_plot

Description

Returns a ggplot2 plot object containing a score density plot.

Usage

density_plot(test.y, pred.prob)

Arguments

test.y

List of know labels on the test set

pred.prob

List of probability predictions on the test set


Generated using the gen_example included in the github source

Description

Generated using the gen_example included in the github source


lift_plot

Description

Returns a ggplot2 plot object containing an precision @ percentile plot

Usage

lift_plot(test.y, pred.prob, granularity = 0.02, show_numbers = T)

Arguments

test.y

List of know labels on the test set

pred.prob

List of probability predictions on the test set

granularity

Default 0.02, probability step between points in plot.

show_numbers

Show numbers at deciles T/F default T.


notation_key_plot

Description

Produces some definitions as a grid.

Usage

notation_key_plot()

positives_plot

Description

Returns a ggplot2 plot object containing an positives-per-decile plot.

Usage

positives_plot(test.y, pred.prob)

Arguments

test.y

List of know labels on the test set

pred.prob

List of probability predictions on the test set


precision_plot

Description

Returns a ggplot2 plot object containing an precision @ percentile plot

Usage

precision_plot(test.y, pred.prob, granularity = 0.02, show_numbers = T)

Arguments

test.y

List of know labels on the test set

pred.prob

List of probability predictions on the test set

granularity

Default 0.02, probability step between points in plot.

show_numbers

Show numbers at deciles T/F default T.


propensity_plot

Description

Returns a ggplot2 plot object containing an propensity @ percentile plot

Usage

propensity_plot(test.y, pred.prob, granularity = 0.02)

Arguments

test.y

List of know labels on the test set

pred.prob

List of probability predictions on the test set

granularity

Default 0.02, probability step between points in plot.


recall_plot

Description

Returns a ggplot2 plot object containing an sensitivity @ percentile plot

Usage

recall_plot(test.y, pred.prob, granularity = 0.02, show_numbers = T)

Arguments

test.y

List of know labels on the test set

pred.prob

List of probability predictions on the test set

granularity

Default 0.02, probability step between points in plot.

show_numbers

Show numbers at deciles T/F default T.


roc_plot

Description

Produces a smoothed ROC curve as a ggplot2 plot object. A confidence interval is produced using bootstrapping, although it is turned off by default if you have a large dataset.

Usage

roc_plot(test.y, pred.prob, resamps = 2000, force_bootstrap = NULL)

Arguments

test.y

List of know labels on the test set

pred.prob

List of probability predictions on the test set

resamps

How many bootstrap samples to use

force_bootstrap

True/False to force or force off bootstrapping.


sigmoid

Description

Logistic sigmoid function, that maps any real number to the [0,1] interval. Supports vectors of numeric.

Usage

sigmoid(x)

Arguments

x

data