Package: classifierplots 1.4.0

Aaron Defazio

classifierplots: Generates a Visualization of Classifier Performance as a Grid of Diagnostic Plots

Generates a visualization of binary classifier performance as a grid of diagnostic plots with just one function call. Includes ROC curves, prediction density, accuracy, precision, recall and calibration plots, all using ggplot2 for easy modification. Debug your binary classifiers faster and easier!

Authors:Aaron Defazio [aut, cre], Huw Campbell [aut]

classifierplots_1.4.0.tar.gz
classifierplots_1.4.0.zip(r-4.5)classifierplots_1.4.0.zip(r-4.4)classifierplots_1.4.0.zip(r-4.3)
classifierplots_1.4.0.tgz(r-4.5-any)classifierplots_1.4.0.tgz(r-4.4-any)classifierplots_1.4.0.tgz(r-4.3-any)
classifierplots_1.4.0.tar.gz(r-4.5-noble)classifierplots_1.4.0.tar.gz(r-4.4-noble)
classifierplots_1.4.0.tgz(r-4.4-emscripten)classifierplots_1.4.0.tgz(r-4.3-emscripten)
classifierplots.pdf |classifierplots.html
classifierplots/json (API)

# Install 'classifierplots' in R:
install.packages('classifierplots', repos = c('https://adefazio.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/adefazio/classifierplots/issues

Datasets:

On CRAN:

Conda:

5.08 score 50 stars 16 scripts 299 downloads 1 mentions 13 exports 83 dependencies

Last updated 4 years agofrom:6d2484899c. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKApr 01 2025
R-4.5-winNOTEApr 01 2025
R-4.5-macNOTEApr 01 2025
R-4.5-linuxNOTEApr 01 2025
R-4.4-winNOTEApr 01 2025
R-4.4-macNOTEApr 01 2025
R-4.4-linuxNOTEApr 01 2025
R-4.3-winNOTEApr 01 2025
R-4.3-macNOTEApr 01 2025

Exports:accuracy_plotcalibration_plotclassifierplotsclassifierplots_folderdensity_plotlift_plotnotation_key_plotpositives_plotprecision_plotpropensity_plotrecall_plotroc_plotsigmoid

Dependencies:bitopscaretcaToolsclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2globalsgluegowergplotsgridExtragtablegtoolshardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpngpROCprodlimprogressrproxypurrrR6RColorBrewerRcpprecipesreshape2rlangROCRrpartscalesshapesparsevctrsSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
accuracy_plotaccuracy_plot
calculate_auccalculate_auc
calibration_plotcalibration_plot
The main functions you want are 'classifierplots' or 'classifierplots_folder'.classifierplots-package classifierplots
classifierplots_folderclassifierplots_folder
density_plotdensity_plot
Generated using the gen_example included in the github sourceexample_predictions
lift_plotlift_plot
notation_key_plotnotation_key_plot
positives_plotpositives_plot
precision_plotprecision_plot
propensity_plotpropensity_plot
recall_plotrecall_plot
roc_plotroc_plot
sigmoidsigmoid